\(\int \frac {1}{(a+\frac {b}{x^3})^{3/2} x^6} \, dx\) [2054]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 517 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=-\frac {8 \sqrt {a+\frac {b}{x^3}}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}+\frac {2}{3 b \sqrt {a+\frac {b}{x^3}} x^2}+\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}-\frac {8 \sqrt {2} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \]

[Out]

2/3/b/x^2/(a+b/x^3)^(1/2)-8/3*(a+b/x^3)^(1/2)/b^(5/3)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))-8/9*a^(1/3)*(a^(1/3)+b^(
1/3)/x)*EllipticF((b^(1/3)/x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)/x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*2^(1/2)*((a^(
2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/b^(5/3)/(a+b/x^3)^(1/2)/(
a^(1/3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)+4/3*a^(1/3)*(a^(1/3)+b^(1/3)/x)*EllipticE
((b^(1/3)/x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)/x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((a^
(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(1/4)/b^(5/3)/(a+b/x^3)^(1/2)/
(a^(1/3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 517, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {342, 294, 309, 224, 1891} \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=-\frac {8 \sqrt {2} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}+\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}-\frac {8 \sqrt {a+\frac {b}{x^3}}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}+\frac {2}{3 b x^2 \sqrt {a+\frac {b}{x^3}}} \]

[In]

Int[1/((a + b/x^3)^(3/2)*x^6),x]

[Out]

(-8*Sqrt[a + b/x^3])/(3*b^(5/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)) + 2/(3*b*Sqrt[a + b/x^3]*x^2) + (4*Sqrt[2
 - Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^
(1/3) + b^(1/3)/x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)
], -7 - 4*Sqrt[3]])/(3^(3/4)*b^(5/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/
3) + b^(1/3)/x)^2]) - (8*Sqrt[2]*a^(1/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))
/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])
*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*b^(5/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x
))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 342

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {x^4}{\left (a+b x^3\right )^{3/2}} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {2}{3 b \sqrt {a+\frac {b}{x^3}} x^2}-\frac {4 \text {Subst}\left (\int \frac {x}{\sqrt {a+b x^3}} \, dx,x,\frac {1}{x}\right )}{3 b} \\ & = \frac {2}{3 b \sqrt {a+\frac {b}{x^3}} x^2}-\frac {4 \text {Subst}\left (\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\sqrt {a+b x^3}} \, dx,x,\frac {1}{x}\right )}{3 b^{4/3}}+\frac {\left (4 \left (1-\sqrt {3}\right ) \sqrt [3]{a}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^3}} \, dx,x,\frac {1}{x}\right )}{3 b^{4/3}} \\ & = -\frac {8 \sqrt {a+\frac {b}{x^3}}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}+\frac {2}{3 b \sqrt {a+\frac {b}{x^3}} x^2}+\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}-\frac {8 \sqrt {2} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.10 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=-\frac {2 \sqrt {1+\frac {a x^3}{b}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {3}{2},\frac {5}{6},-\frac {a x^3}{b}\right )}{b \sqrt {a+\frac {b}{x^3}} x^2} \]

[In]

Integrate[1/((a + b/x^3)^(3/2)*x^6),x]

[Out]

(-2*Sqrt[1 + (a*x^3)/b]*Hypergeometric2F1[-1/6, 3/2, 5/6, -((a*x^3)/b)])/(b*Sqrt[a + b/x^3]*x^2)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2199 vs. \(2 (385 ) = 770\).

Time = 1.91 (sec) , antiderivative size = 2200, normalized size of antiderivative = 4.26

method result size
risch \(\text {Expression too large to display}\) \(2200\)
default \(\text {Expression too large to display}\) \(2867\)

[In]

int(1/(a+b/x^3)^(3/2)/x^6,x,method=_RETURNVERBOSE)

[Out]

-2/b^2*(a*x^3+b)/x^2/((a*x^3+b)/x^3)^(1/2)+1/b^2*a*(2*(x*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3
))*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))+(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3
))*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(
1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(x-1/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I
*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2
)*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(
1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(((-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/
a*(-a^2*b)^(1/3)+1/a^2*(-a^2*b)^(2/3))/(-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*a/(-a^2*b)^(1/3)
*EllipticF(((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-
a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^
2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(3/2/a*(-a^2*
b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2))+(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*Ellipti
cE(((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(
1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/
3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(3/2/a*(-a^2*b)^(1/3)
-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2))*a/(-a^2*b)^(1/3)))/(a*x*(x-1/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3
)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2)-b*(2/3*x^3/b/
((x^3+b/a)*a*x)^(1/2)-2/3/b*(x*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)
-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))+(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*((-3/2/a*(-a^2*b)^(1/3)
+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3
)))^(1/2)*(x-1/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))
/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(1/a*(-a^2*b)^(1/3)*(x+1
/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-
1/a*(-a^2*b)^(1/3)))^(1/2)*(((-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/a*(-a^2*b)^(1/3)+1/a^2*(-a
^2*b)^(2/3))/(-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*a/(-a^2*b)^(1/3)*EllipticF(((-3/2/a*(-a^2*
b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2
*b)^(1/3)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a
*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(
-a^2*b)^(1/3)))^(1/2))+(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*EllipticE(((-3/2/a*(-a^2*b)^(1/3)
+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3
)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b
)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^
(1/3)))^(1/2))*a/(-a^2*b)^(1/3)))/(a*x*(x-1/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)
^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2)))/x^2/((a*x^3+b)/x^3)^(1/2)*(x*(a*x^3+b
))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.12 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\frac {2 \, {\left (b x \sqrt {\frac {a x^{3} + b}{x^{3}}} + 4 \, {\left (a x^{3} + b\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, \frac {1}{x}\right )\right )\right )}}{3 \, {\left (a b^{2} x^{3} + b^{3}\right )}} \]

[In]

integrate(1/(a+b/x^3)^(3/2)/x^6,x, algorithm="fricas")

[Out]

2/3*(b*x*sqrt((a*x^3 + b)/x^3) + 4*(a*x^3 + b)*sqrt(b)*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/
b, 1/x)))/(a*b^2*x^3 + b^3)

Sympy [A] (verification not implemented)

Time = 0.78 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.08 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=- \frac {\Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 a^{\frac {3}{2}} x^{5} \Gamma \left (\frac {8}{3}\right )} \]

[In]

integrate(1/(a+b/x**3)**(3/2)/x**6,x)

[Out]

-gamma(5/3)*hyper((3/2, 5/3), (8/3,), b*exp_polar(I*pi)/(a*x**3))/(3*a**(3/2)*x**5*gamma(8/3))

Maxima [F]

\[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}} x^{6}} \,d x } \]

[In]

integrate(1/(a+b/x^3)^(3/2)/x^6,x, algorithm="maxima")

[Out]

integrate(1/((a + b/x^3)^(3/2)*x^6), x)

Giac [F]

\[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}} x^{6}} \,d x } \]

[In]

integrate(1/(a+b/x^3)^(3/2)/x^6,x, algorithm="giac")

[Out]

integrate(1/((a + b/x^3)^(3/2)*x^6), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\int \frac {1}{x^6\,{\left (a+\frac {b}{x^3}\right )}^{3/2}} \,d x \]

[In]

int(1/(x^6*(a + b/x^3)^(3/2)),x)

[Out]

int(1/(x^6*(a + b/x^3)^(3/2)), x)